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The Application of Wavelet Transform to Identify Chaotic Vibration 
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In this report, the results of identifying chaotic vibration in a four degree-of-freedom vehicle model by continuous wavelet 
transform technique are presented. It is shown that the mother wavelet needs to be selected in order to obtain the better transform 
results. The numeric examples indicate that Mexican hat, Meyer or Morlet mother wavelet may become the best choice for the 
identification. 

I. INTRODUCTION 
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Since the analytical solution of a nonlinear model is usually not available, the numerical analysis and experimental study 
of chaotic phenomena are the basic ways of investigating critical states of a non-linear system. Therefore the method of 
identifying chaos from a time history has a great importance. The chaotic state of a system can be indicated with two kinds 
of ways. One is computation of the dominant Lyapunov exponent. This method is quantitative one and it can prove the 
existence of chaos conclusively. However it is also a laborious, time-consuming analysis [I]. Another way is qualitative one, 
for example, observing time-history response, drawing phase portraits, Poincare maps, bifurcation diagrams or making power 
spectra analysis and auto-correlation analysis [2]. Since the time history could be complex, several qualitative methods need 
to be used simultaneously. Because the weak point in existing method, finding a better one is a research topic until now. 
In a few years ago, it was found that, the characteristic features of a system's chaotic states could be identified by wavelet 
transform of the system's responses [3)-[5]. The wavelet transform (WT) is a powerful technique to decompose time series 
in time-frequency domain and to isolate relevant characteristics. Thus this analysis is particularly suitable for the description 
of non-stationary states and so can be an alternative to the above-mentioned qualitative identification methods. 
The aim of this report is to demonstrate the effectiveness of the continuous wavelet transform (CWT) which ensures 
qualitative identification of chaotic states of the system and show the importance of selection of mother wavelet. Since the 
unified criterion for selecting mother wavelet in detecting chaos is not yet established, the results could be as a reference for 
selecting mother wavelet. 

II. CONTINUOUS WAVELET TRANSFORM AND THE TYPICAL MOTHER WAVELETS 

The continuous wavelet transform is a time-scale analysis that consists of expanding signals in terms of wavelets constructed 
from a single function, the mother waveletゆ(t),by means of dilations and translations [6]. Thus the CWT of the time function 
f (t) is defined as 

閏 (a,b) =〈f,ゆ〉＝五J□J(t) VJ (三）dt a>O (l) 

t-b (a) where f(t) is an arbitrary time function, Wt (a, b) or〈f,ゆ〉 denotesthe CWT of the function f(t), ゅ—- is the 

c-b conjugate form ofゅ言―)• The functionゆ(t)is used as tick marks to measure signal f(t). 
The functionゆ(t)is referred to as the mother wavelet. It should be noticed that any function can serve as the mother 
wavelet, as long as it satisfies the following admissibility condition [7] 

joo~ (ゆ (t))2
lwl 
如 く (XJ (2) 

-oo 
where ~(·) denotes the Fourier transform, and w is the Fourier domain variable. This condition can be described simply 
in the following way: I) the mother wavelet function must oscillate and have an average value of zero, and 2) the mother 
wavelet must have exponential decay and exhibit "compact support." 
In definition ex ressed by Eq. (1), the parameter a represents the scale index, determining the center frequency of the 

function ゅ (~ . The parameter b indicates the time shifting or translation. The CWT in Eq. (I) takes f(t), a member 
of the set of sq:..->integrable fonetions of one~,I ,ariable t inび(R),and tran.sfo,ms it to W1 (a, b), , membet of the set 
of functions of two real variables (a, b). The low scale a is corresponding to high frequency of J(t) and the high scale a is 
corresponding to its low frequency. 
To make the computation of the CWT, the mother wavelet心(t)needs to be selected because the arbitrary choice of the 
wavelet function and it is possible that, for a same signal f(t), different results of CWT could be produced due to the 
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Fig. 1. Mother wavelets: (a) Haar wavelet,(b) Mexican hat wavelet, (c) Meyer wavelet, and (d) Morlet wavelet, (e) Daubechies (db6) wavelet 

selection of mother wavelets. Therefore, the most suitable mother wavelet should be decided to ensure the best transform 

results. In choosing the mother wavelet, there are several factors which should be considered [8]. According to its shape, 
the mother wavelet can be divided into a symmetric type, a skewsymmetric type and an asymmetric type by the symmetric 

property of the function. In this study, these three types of mother wavelet are used and the results for identification of 

chaotic responses are discussed. In Fig. 1, The wave forms of often used mother wavelet: Haar, Mexican hat, Meyer, Morlet 
and Daubechies (db6) are presented. The detailed description and properties of these mother wavelets can be found in book 
[6] and its references. 

Ill. NUMERICAL ANALYSIS 

A. Nonlinear vehicle model 

The four degree-of-freedom vehicle model of the vehicle with non-linear spring forces is shown in Fig. 2 . The notation 

used is listed in Table I. The model consists of a rigid vehicle body, front and rear unsprung mass, springs and dampers of 
front and rear suspensions and tires. Suspension is modeled by a non-linear spring and its damping coefficient is assumed to 
be constant. The suspension springs are assumed to have the following non-linear characteristics [9][10]. 

fs =似sgn(.6.s)IふIn (3) 

where f s is the spring dynamic force, 柘isthe equivalent stiffness, 今 isthe deformation of the spring that can be calculated 
by the displacement of both extremes of the spring, and sgn(・) is the signum function. In equation (3), n is an exponent 

representing non-linearity of the spring and usually ranges between 1 and 1.5. The excitations from the road surface are 

kJ2 

kJ1 

Xb 

Xr 

Xrd 

Fig. 2. Half-vehicle model with non-linear spnng 
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TABLE I 

NOTATION 

mb vehicle body mass J vehicle body inertia m f front unsprung mass 
mr rear unsprung mass lj front length lr rear length 
kJ2 front suspension stiffness 

悶
front suspension damping kr2 rear suspension stiffness 

Cr2 rear suspension damping front tire stiffness C/1 front tire damping 
kr1 rear tire stiffness Crl rear tire damping 呵 displacement of mb 0(t) angular displacement of mb 町(t) displacement of m f Xr(t displacement of mr 
町 d(t) disturbance to the front tire Xrd(t) disturbance to the rear tire 

supposed to be the sinusoid forcing function. The road disturbances for front tires x fd, rear tires x,,.d are defined as follows. 

町d= Asin(2可t)' Xrd = Asin(2可t+ a) (4) 

where A and f is the amplitude and the frequency of the sinusoid road disturbance, respectively. The parameter a indicates 
the time delay between forcing functions of front and rear tires. The vehicle body has rigid heave and pitch motions and the 

unsprung mass has only heave motions. The equation describing the heave motion of the vehicle body can be expressed as 

[11] 

.. 
mbXb —知 sgn(Db12) Db12 ln12 -c12(xb 一切—屑cos0)

—伍 sgn(Dbr2 ) Dbr21nr2 -Cr2伍— 年 十 l鴻 cos0) -mbg 

and pitch motion of the vehicle body is given by 

[k12 sgn(DbJ2)IDげ2町2+ C/2因 — 勾 —屑 cos0)]りcos0

-[kr2 sgn(D伍2)ID加2応 2+ Cr2(Xbー出十lr0COS 0)] lr COS 0 

J0 

where 

Db/2 = Xb —• s/2 -Xf -l1sin0, 

m1i:1 

.. 
mrXr 

Dbr2 = Xbー△sr2 -Xr + lr sin 0 

The motion equation of unsprung mass m 1 and mr can be written as follows. 

k12 sgn(DbJ2)IDbJ2ln12 + CJ2出—勾 — 屑cos0)
-k11 sgn(x1 —• sfl ― 町J)lx1 —△sfl -XJdlnfl -CJ1(勾 — わJd) -m紅

知 sgn(Dbr2)Dbr21nr2 + Cr2(坑一年十l鴻cos0)

-kr1 sgn(叫 —△srl -Xrd) lxr —• srl -Xrdl応 1-Cr1 (年 ーわrd)-mrg 

(5) 

(6) 

(7) 

(8) 

△ In above equations, sij (i = J, , r・J = 1, 2) indicates the static deformation of the nonlinear springs. 

B. Chaotic responses 

With the numerical computation, it was found that for some parameter sets, the responses of the system could be chaotic. 

Fig. 3 shows the Poincare maps which are from⑬ (t), 0(t), x1(t) and Xr(t). The strange attractors are exhibited in Fig. 3, 

which indicates the existence of chaos. Time histories corresponding to Fig. 3 are shown in Fig. 4. By observation, they seem 

to be varying irregularly. To confirm the responses were chaotic, the method by investigating correlation dimension D2 and 

the dominant Lyapunov exponent was implemented [1][12]. To estimate D2, the Grassberger-Procaccia algorithm [13] [14] 

was implemented. To create time embedded vectors for calculating dominant Lyapunov exponent, the values of time delay 
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Fig. 3. p・omcare maps of chaotic motion of the system (c12 = cr2 = 500 kg/s, c11 = Cr1 = 10 kg/s, A= 0.08 m, f = 3.6 Hz, a:= 150°) 
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(c)町(t) (d)叫 (t)

Fig. 5 The results of CWT for the time history in Fig. 4 as Haar wavelet is used. 

were determined using average mutual information [15]. The computation gave the values of D2 for D2x" = 1.62, D20 = 1.47, 
D2x1 = 1.57, and D2xr = 1.56, respectively. The calculated dominant Lyapunov exponents were入Xb= 0.65, 入0= 0.88, 
知=0.20, and心=0.31 in the unit of bits/second, which confirm that the responses were chaotic. 

C. Results of CWT 

The results of CWT for time histories in Fig. 4 are shown in Figs. 5 ,.__, 9. The sampling period of the was 0.003 seconds. In 

these figures, the horizontal axis represents translation b which corresponding to time while the vertical axis represents scale 

a. The color at each x-y point represents the magnitude of the wavelet coefficient W1 (a, b). Larger coefficient is reflected 
by brighter colors. These CWT coefficient plots are precisely the time-scale view of the original time history. 
Fig. 5 exhibits the amplitude behaviors of chaotic time histories of⑬ (t), 0(t), 町 (t)and x r (t) m the time-scale domain 
when Haar wavelet is selected as the mother wavelet. It is clear that, the change of pattern along the horizontal axis is 
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indistinct especially for叫 (t).It is also difficult to see any variation along the vertical axis for any specific value of a in 
the transform results of叫 t),0(t), 町 (t)and叫.(t).Because the variation of pattern in result of CWT will be used as a 
criterion for possible chaotic motion and it can not be seen at least in this case, the Haar wavelet may not be suitable for 
the purpose of identifying chaos. 
Figs. 6 ~8 are results of CWT using symmetric type of mother wavelet: Mexican hat, Meyer and Morlet. The variation 
of pattern in theses figures shows the irregular changes in amplitude and frequency of the analyzed time history, which mean 
the existence of of chaos. Observing Figs. 6~8, it may be concluded that the symmetric type of mother wavelet is suitable 
for tracing the chaotic motion. The results of CWT with Daubechies (db6) which is asymmetric are shown in Fig. 9. The 
variation of pattern in the results can be observed easily. 
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Fig. 6 The results of CWT for the time history in Fig. 4 as Mexican hat wavelet is used. 
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Fig. 7 The results of CWT for the time history in Fig. 4 as Meyer wavelet is used. 
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Fig. 8 The results of CWT for the time history in Fig. 4 as Morlet wavelet is used. 
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Fig. 9 The results of CWT for the time history in Fig. 4 as Daubechies (db6) wavelet is used. 

IV. CONCLUDING REMARKS 

This short report aims at highlighting the effectiveness of using continuous wavelet transform for identifying chaotic 
response of a four degree-of-freedom nonlinear vehicle mode. The main conclusions deduced from the present investigation 

are as follows: 

l) wavelet analysis of a system's response may constitute an effective qualitative tool for differentiating between the 

system's chaotic and non-chaotic states; 
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2) the mother wavelet needs to be selected properly as CWT is implemented for the identifying chaotic motion. The Haar 
mother wavelet are not suitable for identifying purpose. The symmetric mother wavelet such as Mexican hat, Meyer, 
Morlet or asymmetric Daubechies (db6) could be a good candidate; 

3) the identification of chaotic motion with CWT is conducted by observing variation of pattern in the results. Therefore, 
it is possible that, for a same result of CWT, different conclusions may be concluded by different observers. The 
quantitative measurement for evaluating variation of pattern in the result of CWT is needed. This is left for further 
research. 
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